Sách đại số/Số đại số/Hằng số/Hằng số e

Bản mẫu:Mvar thỉnh thoảng còn được gọi là số Euler theo tên của nhà toán học người birminh hamLeonhard Euler (không nên nhầm lẫn với hằng số Euler–Mascheroni γ, còn được gọi tắt là hằng số Euler), hoặc hằng số Napier. Tuy nhiên, ký hiệu Bản mẫu:Mvar của Euler được cho là đã được giữ lại để vinh danh ông.[1] Hằng số này được tìm ra bởi nhà toán học người Thụy Sĩ Jacob Bernoulli khi nghiên cứu về lãi kép.[2][3]

Số Bản mẫu:Mvar có tầm quan trọng lớn trong toán học cùng với số 0, 1, π và [[Đơn vị ảo|Bản mẫu:Mvar]]. Cả năm số này đều đóng vai trò không thể thiếu trong toán học và cùng xuất hiện trong một phương trình của đồng nhất thức Euler. Giống như hằng số π, Bản mẫu:Mvar là một số vô tỉ (không thể biểu diễn thành tỉ số giữa hai số nguyên) và là số siêu việt (không phải là nghiệm của một phương trình đa thức khác không với hệ số hữu tỉ). Giá trị của Bản mẫu:Mvar đến 50 chữ số thập phân là:Bản mẫu:Block indent

Lịch sử

sửa

Hằng số Bản mẫu:Mvar được liên hệ lần đầu tiên vào năm 1618 ở bảng phụ lục trong công trình của John Napier về logarit, nhưng lại không nhắc đến trực tiếp về Bản mẫu:Mvar mà chỉ liệt kê danh sách các logarit được tính từ nó.[3] Bảng này được thừa nhận là do William Oughtred viết ra. Jacob Bernoulli đã tìm ra chính hằng số Bản mẫu:Mvar vào năm 1683 khi tìm giá trị của biểu thức[4][5]

 

Hằng số này được sử dụng lần đầu tiên với ký hiệu là b trong bức thư của Gottfried Leibniz gửi Christiaan Huygens vào năm 1690 và 1691.[6] Leonhard Euler trong thư gửi Christian Goldbach vào ngày 25 tháng 11 năm 1731 đã gọi chữ cái Bản mẫu:Mvar là cơ số của logarit tự nhiên.[7][8] Euler bắt đầu sử dụng chữ Bản mẫu:Mvar để ký hiệu cho hằng số vào khoảng 1727 hoặc 1728 trong một bài báo không được xuất bản về sức nổ của súng thần công, và Bản mẫu:Mvar chỉ xuất hiện trong xuất bản phẩm lần đầu vào năm 1736 trong cuốn Mechanica của ông.[9][10] Dù một số nhà nghiên cứu sử dụng chữ c trong những năm sau đó,[11][12] nhưng chữ Bản mẫu:Mvar dần trở thành tiêu chuẩn về sau này.

Trong toán học, cách phổ biến nhất là viết hằng số thành chữ "Bản mẫu:Mvar" in nghiêng, nhưng tiêu chuẩn ISO 80000-2 khuyến nghị sắp chữ các hằng số theo kiểu thẳng đứng như các chữ cái thông thường.[13]

Ứng dụng

sửa

Lãi kép

sửa
 
Kết quả khi nhận lãi suất 20% mỗi năm trên khoản đầu tư 1.000 đô la theo nhiều chu kỳ tính lãi khác nhau

Jacob Bernoulli tìm ra hằng số Bản mẫu:Mvar vào năm 1683 khi nghiên cứu một bài toán về lãi kép:[3]Bản mẫu:QuoteNếu lãi được tính hai lần trong năm thì lãi suất cho mỗi 6 tháng sẽ là 50%, do đó 1 đô la ban đầu được nhân hai lần cho 1,5 để có 1,00 × 1,52 = 2,25 đô la vào cuối năm. Khi tính lãi theo quý thì ta có 1,00 × 1,254 = 2,4414… đô la, còn tính lãi theo tháng được 1,00 × (1 + 1/12)12 = 2,613035… đô la. Nếu có n khoảng thời gian tính lãi thì lãi suất trên mỗi khoảng là 100%/nsố dư vào cuối năm là 1,00 × (1 + 1/n)n.

Bernoulli nhận thấy chuỗi này tiến dần về một giới hạn với n càng lớn và khoảng thời gian tính lãi càng nhỏ. Tính lãi theo tuần (n = 52) được 2,692597... đô la, còn tính lãi theo ngày (n = 365) thì được 2,714567... đô la, chỉ nhiều hơn hai xu. Giới hạn khi n tăng lên chính là số Bản mẫu:Mvar; khi tính lãi liên tục thì số dư của tài khoản tiệm cận đến 2,7182818... đô la.

Tổng quát hơn, một tài khoản có số dư ban đầu là 1 đô la và nhận lãi suất hằng năm là R thì sau t năm sẽ nhận được eRt đô la khi tính lãi liên tục.[14] (Ở đây R là một số thực bằng với lãi suất phần trăm hằng năm, do đó với lãi suất 5% thì R = 5/100 = 0,05.)

Phép thử Bernoulli

sửa
 
Biểu đồ xác suất P để một biến cố độc lập với xác suất xảy ra là 1/n không xảy ra sau n phép thử Bernoulli và so sánh 1 − Pn. Có thể thấy khi n tăng thì xác suất để một biến cố với xác suất xảy ra 1/n không xảy ra sau n lần thử tiệm cận rất nhanh về 1/e.

Số Bản mẫu:Mvar cũng có ứng dụng trong lý thuyết xác suất, nảy sinh từ một vấn đề không liên quan rõ ràng với lũy thừa. Giả sử một người chơi một máy đánh bạc n lần và xác suất để thắng là một phần n. Với n lớn (chẳng hạn như một triệu) thì xác suất để người đó thua mọi lần gần bằng 1/e. Với n = 20 thì tỉ số này đã gần bằng 1/2,79.

Đó là một ví dụ về phép thử Bernoulli. Mỗi lần người đó chơi máy thì xác suất để thắng là một trên một triệu. Một triệu lần chơi như thế được mô hình hóa bằng phân phối nhị thức, vốn có liên hệ mật thiết với định lý nhị thứctam giác Pascal. Xác suất để thắng k lần trên một triệu lần chơi là

 

Đặc biệt, xác suất để người đó không thắng lần nào (k = 0) là

 

rất gần với giới hạn

 

Phân phối chuẩn tắc

sửa
Xem trang sách: Phân phối chuẩn

Phân phối chuẩn với trung bình bằng 0 và độ lệch chuẩn bằng 1 được gọi là phân phối chuẩn tắc và được cho bởi hàm mật độ xác suất[15]

 

Điều kiện phương sai bằng 1 (độ lệch chuẩn bằng 1) dẫn đến phân số Bản mẫu:Sfrac trong số mũ, và điều kiện tổng diện tích dưới đường cong ϕ(x) bằng 1 dẫn đến tỷ số  . Hàm số này đối xứng quanh x = 0, tại đó nó đạt giá trị lớn nhất  , và có các điểm uốn tại x = ±1.

Hoán vị vô trật tự

sửa
Xem trang sách: Hoán vị vô trật tự

Một ứng dụng khác của Bản mẫu:Mvar, vốn do Jacob Bernoulli và Pierre Raymond de Montmort tìm ra, nằm trong bài toán về hoán vị vô trật tự hay còn gọi là bài toán trả mũ.[16]n vị khách được mời đến một bữa tiệc và đều phải trả mũ của họ cho quản gia. Quản gia sẽ đặt số mũ này vào n hộp, mỗi hộp được ghi tên của một vị khách duy nhất. Nhưng quản gia lại không hỏi trước tên của các vị khách nên việc xếp mũ vào hộp được thực hiện một cách ngẫu nhiên. Bài toán của de Montmort là tìm xác suất để không có chiếc mũ nào được đặt đúng vào hộp của vị khách đó. Câu trả lời là

 

Khi số vị khách n tiến đến vô hạn thì pn tiệm cận về 1/e. Hơn nữa, số cách xếp mũ vào hộp để biến cố trên xảy ra là n!/e (làm tròn đến hàng đơn vị) với n là số dương.[17]

Bài toán kế hoạch tối ưu

sửa

Một gậy chiều dài Bản mẫu:Mvar bị vỡ thành Bản mẫu:Mvar mảnh có độ dài bằng nhau. Giá trị của Bản mẫu:Mvar để tích các độ dài này lớn nhất là[18]

  hay  

  đạt giá trị lớn nhất tại   (bài toán Steiner, xem dưới đây). Đại lượng   là một độ đo lượng thông tin thu được từ một biến cố xảy ra với xác suất  , do đó phép chia tối ưu trên xuất hiện trong các bài toán kế hoạch tối ưu, chẳng hạn như bài toán thư ký.

Tiệm cận

sửa

Số Bản mẫu:Mvar xuất hiện khi liên hệ với nhiều bài toán liên quan đến tiệm cận. Một ví dụ là công thức Stirling về tiệm cận của hàm giai thừa có sự xuất hiện của cả hai số Bản mẫu:Mvarπ:[19]

 

Từ đó

 

Trong vi tích phân

sửa
 
Đồ thị của hàm xaBản mẫu:Sup với a = 2 (đường kẻ chấm), a = e (đường màu xanh) và a = 4 (đường nét đứt). Chúng đều đi qua điểm (0,1), nhưng đường màu đỏ (hệ số góc là 1) chỉ là tiếp tuyến của hàm eBản mẫu:Sup tại đó.
 
Logarit tự nhiên của số Bản mẫu:Mvar hay ln(e) bằng 1.

Cơ sở chủ yếu cho sự ra đời của số Bản mẫu:Mvar, đặc biệt trong vi tích phân là từ các phép tính vi phântích phân với các hàm mũlogarit.[20] Tổng quát, hàm mũ y = ax có đạo hàm được cho bởi giới hạn:

 

Giới hạn trong ngoặc ở vế phải độc lập với biến x và chỉ phụ thuộc vào cơ số a. Khi cơ số đó bằng Bản mẫu:Mvar thì giới hạn trên bằng 1 nên Bản mẫu:Mvar được định nghĩa tượng trưng bởi phương trình:

 

Do đó, hàm mũ cơ số Bản mẫu:Mvar rất phù hợp cho việc tính vi tích phân, vì nó giúp đơn giản hóa nhiều phép tính liên quan đến đạo hàm.

Một cách tiếp cận khác đến từ việc tính đạo hàm của logarit cơ số a (loga x) với x > 0:[21]

 

trong đó đặt u = h/x. Logarit cơ số a của Bản mẫu:Mvar bằng 1 nếu a bằng Bản mẫu:Mvar, do đó

 

Logarit với cơ số đặc biệt này được gọi là logarit tự nhiên và được ký hiệu là ln, giúp đơn giản hóa phép vi phân do không cần tìm các giới hạn chưa biết.

Như vậy, có hai cách để tìm một số a đặc biệt như thế. Cách thứ nhất là cho đạo hàm của hàm mũ ax bằng với ax rồi giải phương trình để tìm a. Cách thứ hai là cho đạo hàm của logarit cơ số a bằng 1/x và giải tương tự. Cả hai nghiệm a thu được thực chất là giống nhau và bằng số Bản mẫu:Mvar.

Các cách biểu diễn khác

sửa

Bản mẫu:Xem thêm

 
Cả năm vùng được tô màu đều có diện tích bằng nhau và xác định đơn vị của góc hyperbol dọc theo hyperbol  .

Có nhiều cách biểu diễn số Bản mẫu:Mvar: giới hạn của một dãy, tổng của một chuỗi vô hạn hay các biểu thức liên quan đến giải tích tích phân. Trên đây, ta đã biết được hai tính chất:

  1. Bản mẫu:Mvarsố thực dương duy nhất sao cho  .
  2. Bản mẫu:Mvar là số thực dương duy nhất sao cho  .

Bốn cách biểu diễn sau cũng được chứng minh là tương tự như trên:Bản mẫu:Ordered list

Tính chất

sửa

Vi tích phân

sửa

Hàm mũ ex rất quan trọng một phần do đây là hàm số duy nhất có đạo hàm bằng chính nó:

 

và do đó cũng có nguyên hàm bằng chính nó:

 

Bất đẳng thức

sửa
 
Đồ thị của hàm mũ    cắt đường thẳng   lần lượt tại   . Số   là cơ số duy nhất của hàm mũ sao cho đồ thị   cắt đường thẳng tại giao điểm duy nhất  . Dễ thấy rằng giá trị của   nằm giữa 2 và 4.

Bản mẫu:Mvar là số thực duy nhất sao cho

 

với mọi số dương x.[22]

Đồng thời, ta cũng có bất đẳng thức

 

với mọi số thực x, và dấu bằng xảy ra khi và chỉ khi x = 0. Hơn nữa, e là cơ số duy nhất của hàm mũ để bất đẳng thức axx + 1 đúng với mọi x.[23] Đó là một trường hợp giới hạn của bất đẳng thức Bernoulli.

Hàm tựa mũ

sửa
 
Giá trị lớn nhất của   đạt được tại x = e.

Bài toán Steiner yêu cầu tìm giá trị lớn nhất của hàm số

 

Giá trị lớn nhất này đạt được tại x = e. Để chứng minh, từ bất đẳng thức   ở trên, đặt   rồi rút gọn thì ta có  . Do đó   với mọi số dương x.[24]

Tương tự, x = 1/e là điểm để hàm số

 

đạt giá trị nhỏ nhất với x là số dương. Tổng quát hơn, hàm số

 

với x là số dương đạt giá trị lớn nhất tại x = 1/e khi n < 0 và đạt giá trị nhỏ nhất tại x = e−1/n khi n > 0.

Tetration vô hạn

  hay  

hội tụ khi và chỉ khi eexe1/e (hay x nằm giữa 0,0660 và 1,4447) theo một định lý của Leonhard Euler.[25]

Lý thuyết số

sửa

Số thực Bản mẫu:Mvar là một số vô tỉ. Euler chứng minh được điều này bằng cách cho thấy liên phân số của nó có thể được mở rộng ra vô hạn.[26][27]Bản mẫu:Efn Hơn nữa, theo định lý Lindemann–Weierstrass, Bản mẫu:Mvar là một số siêu việt, có nghĩa là nó không phải là nghiệm của bất kỳ phương trình đa thức khác không với hệ số hữu tỉ. Charles Hermite chứng minh được điều này vào năm 1873.[28]

Có phỏng đoán cho rằng Bản mẫu:Mvarsố bình thường, có nghĩa là khi e được biểu diễn trên bất kỳ hệ đếm cơ số nào thì các chữ số trong hệ đếm đó được phân bố đồng đều nhau (xuất hiện với xác suất bằng nhau trong bất kỳ chuỗi nào với độ dài cho trước).[29]

Số phức

sửa

Hàm mũ ex có thể được viết thành chuỗi Taylor:[30]

 

Vì chuỗi trên hội tụ với bất kỳ giá trị phức nào của x nên nó có thể được dùng để mở rộng khái niệm ex cho số phức. Cùng với chuỗi Taylor cho sin xcos x, ta suy ra được công thức Euler đúng với mọi số phức x:

 

Trường hợp đặc biệt với x = πđồng nhất thức Euler:

 

từ đó suy ra, trong nhánh chủ yếu của logarit,

 

Hơn nữa, áp dụng các công thức lũy thừa,

 

đó chính là công thức de Moivre.

Biểu thức

 

còn được ký hiệu là cis(x).[31]

Ta cũng suy ra được các biểu thức biểu diễn    theo các hàm mũ:

 

Phương trình vi phân

sửa

Họ các hàm số

 

với Bản mẫu:Mvar là số thực, là nghiệm của phương trình vi phân

 

Biểu diễn

sửa
Xem trang sách: Danh sách biểu diễn của e

Số e có thể được biểu diễn thành một số thực theo nhiều cách khác nhau: là một chuỗi vô hạn, một tích vô hạn, một liên phân số hay giới hạn của một dãy. Trong số đó, thông dụng nhất là giới hạn

 

đã cho ở trên, và chuỗi

 

có được bằng cách thay x = 1 vào chuỗi lũy thừa cho hàm mũ ex ở trên.

Một dạng khác ít phổ biến hơn là liên phân số[32]

  Bản mẫu:OEIS

hoặc được viết thành

 

Nhiều cách biểu diễn khác của e dưới dạng chuỗi, dãy số, liên phân số và tích vô hạn cũng đã được tìm ra và phát triển.

Biểu diễn ngẫu nhiên

sửa

Cùng với các biểu thức giải tích chính xác, Bản mẫu:Mvar còn có thể được tính gần đúng thông qua các kỹ thuật ngẫu nhiên. Một cách tiếp cận như thế bắt đầu từ một dãy vô hạn các biến độc lập ngẫu nhiên X1, X2,... trong một phân phối đều trên [0, 1]. Gọi V là số n nhỏ nhất để tổng của n biến đầu tiên như vậy lớn hơn 1:

 

Khi đó giá trị kỳ vọng của VBản mẫu:Mvar hay E(V) = e.[33]

Số chữ số đã biết

sửa

Số chữ số đã biết của Bản mẫu:Mvar đã gia tăng đáng kể trong vài thập kỷ trở lại đây do sự phát triển của máy tính và thuật toán nói chung.

Số chữ số thập phân đã biết của Bản mẫu:Mvar
Năm Số chữ số Tính toán thực hiện bởi
1690 1 Jacob Bernoulli[4]
1714 13 Roger Cotes[34]
1748 23 Leonhard Euler[30]
1853 137 William Shanks[35]
1871 205 William Shanks[36]
1884 346 J. Marcus Boorman[37]
1926 707 Derrick Henry Lehmer[38]
1944 808 Peder Pedersen[39]
1949 2.010 John von Neumann (trên ENIAC)[40]
1961 100.265 Daniel ShanksJohn Wrench[41]
1978 116.000 Steve Wozniak trên Apple II[42]

Từ khoảng năm 2010, với sự ra đời của máy tính để bàn hiện đại tốc độ cao, việc tính toán hàng nghìn tỷ chữ số của Bản mẫu:Mvar trong một khoảng thời gian chấp nhận được là hoàn toàn khả thi. Tính đến ngày 5 tháng 12 năm 2020, Bản mẫu:Mvar đã được tính đến 31,4 nghìn tỷ chữ số thập phân.[43]

  1. Sondow, Jonathan. “e”. Wolfram Mathworld. Wolfram Research.
  2. Pickover, Clifford A. (2009). The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics. Sterling Publishing Company. tr. 166. ISBN 978-1-4027-5796-9. https://books.google.com/books?id=JrslMKTgSZwC.  Trích tr. 166
  3. 3,0 3,1 3,2 Lỗi khi kêu gọi {{Chú thích web}}: hai tham số urltitle phải được chỉ định. {{{publisher}}}. [{{{archiveurl}}} Bản chính] lưu trữ 27 tháng 6 năm 2020. Truy cập 16 tháng 5 năm 2021.
  4. 4,0 4,1 Jacob Bernoulli đã xét bài toán về cộng gộp lãi suất liên tục, dẫn đến một chuỗi biểu thức cho e. Xem: Bernoulli, Jacob (1690). "Quæstiones nonnullæ de usuris, cum solutione problematis de sorte alearum, propositi in Ephem. Gall. A. 1685". Acta eruditorum: 219–223.  Ở trang 222, Bernoulli đặt câu hỏi: "Alterius naturæ hoc Problema est: Quæritur, si creditor aliquis pecuniæ summam fænori exponat, ea lege, ut singulis momentis pars proportionalis usuræ annuæ sorti annumeretur; quantum ipsi finito anno debeatur?" (Đây là một vấn đề dạng khác: Câu hỏi là, nếu một người cho vay muốn đầu tư [một] lượng tiền nhất định [để] sinh lãi, để nó cộng dồn dần lên, sao cho [tại] bất kỳ thời điểm nào [nó] nhận được [một] phần tỷ lệ với lãi suất hàng năm; người đó sẽ bị nợ bao nhiều [vào] cuối năm?) Bernoulli xây dựng một chuỗi lũy thừa để giải quyết bài toán trên rồi viết: " … quæ nostra serie [biểu thức toán học của một chuỗi hình học] &c. major est. … si a=b, debebitur plu quam 2½a & minus quam 3a." (… mà chuỗi của ta [một chuỗi hình học] lớn hơn [so với]. … nếu a=b, [người cho vay] sẽ bị nợ nhiều hơn 2½a và ít hơn 3a.) Nếu a=b, chuỗi lũy thừa được đưa về chuỗi a × e, nên 2,5 < e < 3. (** Có liên hệ đến bài toán mà Jacob Bernoulli đặt ra và xuất hiện trong Journal des Sçavans năm 1685 ở cuối trang 314.)
  5. Boyer, Carl B.; Merzbach, Uta C. (1991). A History of Mathematics (ấn bản 2). Wiley. tr. 419. ISBN 0-471-09763-2. https://archive.org/details/historyofmathema00boye. 
  6. XXIII. Leibniz an Huygens, ngày 27 tháng 1 năm 1691 trong: Gerhardt, C. J., ed (1899). Der Briefwechsel von Gottfried Wilhelm Leibniz mit Mathematikern. Berlin: Mayer & Müller. 633. https://archive.org/details/derbriefwechselv00leibuoft. "... Bản mẫu:Mvar estant une grandeur constante, dont le logarithme est 1, et le logarithme de 1 estant 0." 
  7. Lettre XV. Euler à Goldbach, ngày 25 tháng 11 năm 1731 trong: Fuss, Paul H., ed (1843). Correspondance mathématique et physique de quelques célèbres géomètres du XVIIIème siècle. 1. St. Petersburg, Nga. 56–60.  (đặc biệt xem tr. 58.) Trích tr. 58: "… (e denotat hic numerum, cujus logarithmus hyperbolicus est = 1), …" (…(e ký hiệu cho một số mà logarit hyperbol [tự nhiên] bằng 1)…)
  8. Remmert, Reinhold (1991). Theory of Complex Functions. Springer-Verlag. tr. 136. ISBN 978-0-387-97195-7. https://archive.org/details/theorycomplexfun00remm. 
  9. Euler, Leonhard (1862). "Meditatio in experimenta explosione tormentorum nuper instituta". Opera Postuma 2: 800–804. https://scholarlycommons.pacific.edu/euler-works/853/. 
  10. Euler, Leonhard (1736). Mechanica, sive Motus scientia analytice exposita. 1. St. Petersburg (Petropoli), Nga: Viện Hàn lâm Khoa học. 68.  Trích chương 2, hệ quả 11, đoạn 171, tr. 68: Erit enim   seu   ubi e denotat numerum, cuius logarithmus hyperbolicus est 1. (Do đó nó [c, vận tốc] sẽ là   hay  , với e ký hiệu cho một số mà logarit hyperbol [tự nhiên] bằng 1.)
  11. Gregory, Olinthus (1815). A Treatise of Mechanics, Theoretical, Practical, and Descriptive: Containing the theory of statics, dynamics, hydrostatics, hydrodynamics, and pneumatics (ấn bản 3). London: Rivington. tr. 548. https://books.google.com/books?id=DeL_lS7FS0UC. "To determine Bản mẫu:Mvar in terms of Bản mẫu:Mvar, put Bản mẫu:Mvar = 2.718281828;..." 
  12. Laplace, Pierre-Simon (1805). Traité de mécanique céleste. 4. Paris. 243. https://archive.org/details/in.ernet.dli.2015.358121. "... Bản mẫu:Mvar étant le nombre dont le logarithme hyperbolique est l'unité,..." 
  13. Bản mẫu:Citation
  14. Boyer, Lee E.; Hippensteel, Philip J.; Luiz, J. Robert (November 1974). "Mathematics applied in the modern bank". The Mathematics Teacher 67 (7): 611–614. https://www.jstor.org/stable/27959856.  Đặc biệt xem tr. 611–612.
  15. Bản mẫu:Harvnb
  16. Grinstead, Charles M.; Snell, J. Laurie (1997). Introduction to probability theory (ấn bản 2). American Mathematical Society. 85. ISBN 978-0-8218-0749-1. http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/amsbook.mac.pdf. 
  17. Knuth, Donald (1997). The Art of Computer Programming. 1. Addison-Wesley. 183. ISBN 0-201-03801-3. 
  18. Finch, Steven (2003). Mathematical Constants. Cambridge University Press. 14. ISBN 0-521-81805-2. https://archive.org/details/mathematicalcons0000finc. 
  19. Eves, Howard Whitley (1969). An Introduction to the History of Mathematics. Holt, Rinehart & Winston. 356. ISBN 978-0-03-029558-4. https://archive.org/details/introductiontohi00eves_0/page/356/mode/2up. 
  20. Kline, Morris (1998). Calculus: An intuitive and physical approach. Courier Dover Publications. 337. ISBN 0-486-40453-6. https://books.google.com/books?id=YdjK_rD7BEkC&pg=PA337. 
  21. Bản mẫu:Harvnb
  22. Dorrie, Heinrich (1965). 100 Great Problems of Elementary Mathematics. New York: Dover. 44–48. ISBN 978-0-486-61348-2. https://books.google.com/books?id=C5iH2dczNG4C. 
  23. Một bài tập giải tích tiêu chuẩn sử dụng định lý giá trị trung bình; xem Apostol, Tom M. (1967). Calculus, Vol. 1: One-Variable Calculus with an Introduction to Linear Algebra. New York: Wiley. 250. ISBN 978-0-471-00005-1. https://archive.org/details/calculus01apos/page/250/.  Mục §6.17.41.
  24. Bản mẫu:Harvnb
  25. Euler, Leonhard (1783). "De serie Lambertina Plurimisque eius insignibus proprietatibus". Acta Academiae Scientiarum Imperialis Petropolitanae 2: 29–51. http://eulerarchive.maa.org//docs/originals/E532.pdf.  In lại trong Euler, Leonhard (1921). Opera Omnia, Series Prima, Vol. 6: Commentationes Algebraicae. Leipzig, Đức: Teubner. 350–369. 
  26. Euler, Leonhard (1744). "De fractionibus continuis dissertatio". Commentarii academiae scientiarum Petropolitanae 9: 98–137. http://www.math.dartmouth.edu/~euler/docs/originals/E071.pdf. 
  27. Sandifer, C. Edward (1 tháng 2 năm 2006). “How Euler Did It: Who proved Bản mẫu:Mvar is Irrational?”. MAA Online. Bản chính lưu trữ ngày 23 tháng 2 năm 2014. In lại trong Sandifer, C. Edward (2007). How Euler Did It. Mathematical Association of America. 185–195. ISBN 978-0-88385-563-8. https://books.google.com/books?id=sohHs7ExOsYC&pg=PA185. 
  28. Hermite, Charles (1873). "Sur la fonction exponentielle". Comptes rendus hebdomadaires des séances de l'Académie des sciences 77: 18–24, 74–79, 226–233, 285–293. https://gallica.bnf.fr/ark:/12148/bpt6k3034n/f18. 
  29. Borel, Émile (1950). "Sur les chiffres décimaux de Bản mẫu:Sqrt et divers probléme de probabilites en chaîne". Comptes rendus hebdomadaires des séances de l'Académie des sciences 230: 591–593. https://gallica.bnf.fr/ark:/12148/bpt6k3182n/f591.item.  Trong bài viết này, Émile Borel đưa ra giả thuyết rằng mọi số đại số vô tỉ, trong đó có số Bản mẫu:Mvar, đều là số bình thường.
  30. 30,0 30,1 Euler, Leonhard (1748). Introductio In Analysin Infinitorum. 1. Lausanne, Thụy Sĩ: Marc Michel Bousquet & Co.. 90. https://books.google.com/books?id=VHNdAAAAcAAJ. 
  31. Lỗi khi kêu gọi {{Chú thích web}}: hai tham số urltitle phải được chỉ định. {{{publisher}}}. [{{{archiveurl}}} Bản chính] lưu trữ 27 tháng 1 năm 2016. Truy cập 18 tháng 7 năm 2020.
  32. Hofstadter, Douglas (1995). Fluid Concepts and Creative Analogies: Computer Models of the Fundamental Mechanisms of Thought. London: Allen Lane the Penguin Press. 36. ISBN 0-7139-9155-0. 
  33. Russell, K. G. (February 1991). "Estimating the Value of e by Simulation". The American Statistician 45 (1): 66–68. doi:10.2307/2685243. JSTOR 2685243. https://www.jstor.org/stable/2685243. 
  34. Cotes, Roger (1714). "Logometria". Philosophical Transactions of the Royal Society of London 29 (338): 5–45.  Trích trang 10: "Porro eadem ratio est inter 2,718281828459 &c et 1, …" (Hơn nữa, tỉ số này nằm giữa 2,718281828459… và 1, …)
  35. Shanks, William (1853). Contributions to Mathematics, comprising chiefly the rectification of the circle to 607 places of decimals. London, Anh: G. Bell. 89. https://books.google.com/books?id=d-9ZAAAAcAAJ&pg=PA89. 
  36. Shanks, William (1871). "On the numerical values of e, loge 2, loge 3, loge 5, and loge 10, also on the numerical value of M the modulus of the common system of logarithms, all to 205 decimals". Proceedings of the Royal Society of London 20: 27–29. https://books.google.com/books?id=sclTAAAAcAAJ&pg=PA27. 
  37. Boorman, J. Marcus (October 1884). "Computation of the Napierian base". Mathematical Magazine 1 (12): 204–205. https://books.google.com/books?id=mG8yAQAAMAAJ&pg=PA204. 
  38. Lehmer, Derrick Henry (April 1926). "On the Value of the Napierian Base". American Journal of Mathematics 48 (2): 139–143. doi:10.2307/2370743. https://www.jstor.org/stable/2370743. 
  39. Pedersen, Peder (1944). "Fortsetzung der Berechnung der Grundzahl Bản mẫu:Mvar der natürlichen Logarithmen bis zur 808. Dezimalstelle". Meddelelse (Đan Mạch: Geodætisk Institut) 17. ; 21 tr. Bình duyệt trong "Recent Mathematical Tables". Mathematical Tables and Other Aids to Computation (American Mathematical Society) 2: 68–85. April 1946. doi:10.2307/2002534. JSTOR 2002534. https://www.jstor.org/stable/2002534.  (đặc biệt xem tr. 68–69)
  40. Reitwiesner, George W. (January 1950). "An ENIAC Determination of π and e to more than 2000 Decimal Places". Mathematical Tables and Other Aids to Computation 4 (29): 11–15. doi:10.2307/2002695. JSTOR 2002695. https://www.jstor.org/stable/2002695. 
  41. Shanks, Daniel; Wrench, John W. (1962). "Calculation of Pi to 100,000 Decimals". Mathematics of Computation 16 (77): 76–99 (78). doi:10.2307/2003813. JSTOR 2003813. http://www.ams.org/journals/mcom/1962-16-077/S0025-5718-1962-0136051-9/S0025-5718-1962-0136051-9.pdf. "We have computed e on a 7090 to 100,265D by the obvious program". 
  42. Wozniak, Steve (1 tháng 6 năm 1981). "The Impossible Dream: Computing e to 116,000 Places with a Personal Computer". BYTE: tr. 392. https://archive.org/stream/byte-magazine-1981-06/1981_06_BYTE_06-06_Operating_Systems#page/n393/mode/2up. 
  43. Yee. “Records Set by y-cruncher”. {{{publisher}}}. Truy cập 27 tháng 7 năm 2020.