Trong toán học, các đẳng thức lượng giác là các phương trình chứa các hàm lượng giác, đúng với một dải lớn các giá trị của biến số. Các đẳng thức này hữu ích cho việc rút gọn các biểu thức chứa hàm lượng giác. Ví dụ trong việc tính tích phân với các hàm không phải là lượng giác: có thể thay chúng bằng các hàm lượng giác và dùng các đẳng thức lượng giác để đơn giản hóa phép tính.
Đẳng thức lượng giác cơ bản
sửa
Xem thêm các hàm lượng giác
tan
(
x
)
=
sin
(
x
)
cos
(
x
)
cotg
(
x
)
=
cos
(
x
)
sin
(
x
)
=
1
tan
(
x
)
{\displaystyle \tan(x)={\frac {\sin(x)}{\cos(x)}}\qquad \operatorname {cotg} (x)={\frac {\cos(x)}{\sin(x)}}={\frac {1}{\tan(x)}}}
Đẳng thức lượng giác Tuần hoàn, đối xứng và tịnh tiến
sửa
Các đẳng thức sau có thể dễ thấy trên vòng tròn đơn vị:
nguyên)
Đối xứng
Tịnh tiến
sin
(
x
)
=
sin
(
x
+
2
k
π
)
{\displaystyle \sin(x)=\sin(x+2k\pi )\,}
sin
(
−
x
)
=
−
sin
(
x
)
{\displaystyle \sin(-x)=-\sin(x)\,}
sin
(
x
)
=
cos
(
π
2
−
x
)
{\displaystyle \sin(x)=\cos \left({\frac {\pi }{2}}-x\right)}
cos
(
x
)
=
cos
(
x
+
2
k
π
)
{\displaystyle \cos(x)=\cos(x+2k\pi )\,}
cos
(
−
x
)
=
cos
(
x
)
{\displaystyle \cos(-x)=\;\cos(x)\,}
cos
(
x
)
=
sin
(
π
2
−
x
)
{\displaystyle \cos(x)=\sin \left({\frac {\pi }{2}}-x\right)}
tan
(
x
)
=
tan
(
x
+
k
π
)
{\displaystyle \tan(x)=\tan(x+k\pi )\,}
tan
(
−
x
)
=
−
tan
(
x
)
{\displaystyle \tan(-x)=-\tan(x)\,}
tan
(
x
)
=
cot
(
π
2
−
x
)
{\displaystyle \tan(x)=\cot \left({\frac {\pi }{2}}-x\right)}
cot
(
−
x
)
=
−
cot
(
x
)
{\displaystyle \cot(-x)=-\cot(x)\,}
Đẳng thức sau cũng đôi khi hữu ích:
a
sin
x
+
b
cos
x
=
a
2
+
b
2
⋅
sin
(
x
+
φ
)
{\displaystyle a\sin x+b\cos x={\sqrt {a^{2}+b^{2}}}\cdot \sin(x+\varphi )}
với
φ
=
{
a
r
c
t
a
n
(
b
/
a
)
,
n
e
^
´
u
a
≥
0
;
π
+
a
r
c
t
a
n
(
b
/
a
)
,
n
e
^
´
u
a
<
0.
{\displaystyle \varphi =\left\{{\begin{matrix}{\rm {arctan}}(b/a),&&{\mbox{n}}{\acute {\hat {\mbox{e}}}}{\mbox{u}}\ a\geq 0;\;\\\pi +{\rm {arctan}}(b/a),&&{\mbox{n}}{\acute {\hat {\mbox{e}}}}{\mbox{u}}\ a<0.\;\end{matrix}}\right.\;}
Các đẳng thức sau có thể dễ thấy trên vòng tròn đơn vị:
nguyên)
Đối xứng
Tịnh tiến
sin
(
x
)
=
sin
(
x
+
2
k
π
)
{\displaystyle \sin(x)=\sin(x+2k\pi )\,}
sin
(
−
x
)
=
−
sin
(
x
)
{\displaystyle \sin(-x)=-\sin(x)\,}
sin
(
x
)
=
cos
(
π
2
−
x
)
{\displaystyle \sin(x)=\cos \left({\frac {\pi }{2}}-x\right)}
cos
(
x
)
=
cos
(
x
+
2
k
π
)
{\displaystyle \cos(x)=\cos(x+2k\pi )\,}
cos
(
−
x
)
=
cos
(
x
)
{\displaystyle \cos(-x)=\;\cos(x)\,}
cos
(
x
)
=
sin
(
π
2
−
x
)
{\displaystyle \cos(x)=\sin \left({\frac {\pi }{2}}-x\right)}
tan
(
x
)
=
tan
(
x
+
k
π
)
{\displaystyle \tan(x)=\tan(x+k\pi )\,}
tan
(
−
x
)
=
−
tan
(
x
)
{\displaystyle \tan(-x)=-\tan(x)\,}
tan
(
x
)
=
cot
(
π
2
−
x
)
{\displaystyle \tan(x)=\cot \left({\frac {\pi }{2}}-x\right)}
cot
(
−
x
)
=
−
cot
(
x
)
{\displaystyle \cot(-x)=-\cot(x)\,}
Đẳng thức sau cũng đôi khi hữu ích:
a
sin
x
+
b
cos
x
=
a
2
+
b
2
⋅
sin
(
x
+
φ
)
{\displaystyle a\sin x+b\cos x={\sqrt {a^{2}+b^{2}}}\cdot \sin(x+\varphi )}
với
φ
=
{
a
r
c
t
a
n
(
b
/
a
)
,
n
e
^
´
u
a
≥
0
;
π
+
a
r
c
t
a
n
(
b
/
a
)
,
n
e
^
´
u
a
<
0.
{\displaystyle \varphi =\left\{{\begin{matrix}{\rm {arctan}}(b/a),&&{\mbox{n}}{\acute {\hat {\mbox{e}}}}{\mbox{u}}\ a\geq 0;\;\\\pi +{\rm {arctan}}(b/a),&&{\mbox{n}}{\acute {\hat {\mbox{e}}}}{\mbox{u}}\ a<0.\;\end{matrix}}\right.\;}
Đẳng thức Tổng và hiệu của góc
sửa
Đẳng thức Biến tích thành tổng
sửa
Đẳng thức lượng giác nghịch đảo
sửa
arcsin
(
x
)
+
arccos
(
x
)
=
π
/
2
{\displaystyle \arcsin(x)+\arccos(x)=\pi /2\;}
arctan
(
x
)
+
arccot
(
x
)
=
π
/
2.
{\displaystyle \arctan(x)+\operatorname {arccot}(x)=\pi /2.\;}
arctan
(
x
)
+
arctan
(
1
/
x
)
=
{
π
/
2
,
n
e
^
´
u
x
>
0
−
π
/
2
,
n
e
^
´
u
x
<
0
.
{\displaystyle \arctan(x)+\arctan(1/x)=\left\{{\begin{matrix}\pi /2,&{\mbox{n}}{\acute {\hat {\mbox{e}}}}{\mbox{u}}\ x>0\\-\pi /2,&{\mbox{n}}{\acute {\hat {\mbox{e}}}}{\mbox{u}}\ x<0\end{matrix}}\right..}
arctan
(
x
)
+
arctan
(
y
)
=
arctan
(
x
+
y
1
−
x
y
)
{\displaystyle \arctan(x)+\arctan(y)=\arctan \left({\frac {x+y}{1-xy}}\right)\;}
arctan
(
x
)
−
arctan
(
y
)
=
arctan
(
x
−
y
1
+
x
y
)
{\displaystyle \arctan(x)-\arctan(y)=\arctan \left({\frac {x-y}{1+xy}}\right)\;}
sin
(
arccos
(
x
)
)
=
1
−
x
2
{\displaystyle \sin(\arccos(x))={\sqrt {1-x^{2}}}\,}
cos
(
arcsin
(
x
)
)
=
1
−
x
2
{\displaystyle \cos(\arcsin(x))={\sqrt {1-x^{2}}}\,}
sin
(
arctan
(
x
)
)
=
x
1
+
x
2
{\displaystyle \sin(\arctan(x))={\frac {x}{\sqrt {1+x^{2}}}}}
cos
(
arctan
(
x
)
)
=
1
1
+
x
2
{\displaystyle \cos(\arctan(x))={\frac {1}{\sqrt {1+x^{2}}}}}
tan
(
arcsin
(
x
)
)
=
x
1
−
x
2
{\displaystyle \tan(\arcsin(x))={\frac {x}{\sqrt {1-x^{2}}}}}
tan
(
arccos
(
x
)
)
=
1
−
x
2
x
{\displaystyle \tan(\arccos(x))={\frac {\sqrt {1-x^{2}}}{x}}}
Đẳng thức Dạng số phức
sửa
Đẳng thức Tích vô hạn
sửa
Đẳng thức Thường Dùng
sửa
sin
(
x
+
y
)
=
sin
x
cos
y
+
cos
x
sin
y
{\displaystyle \sin \left(x+y\right)=\sin x\cos y+\cos x\sin y}
sin
(
x
−
y
)
=
sin
x
cos
y
−
cos
x
sin
y
{\displaystyle \sin \left(x-y\right)=\sin x\cos y-\cos x\sin y}
cos
(
x
+
y
)
=
cos
x
cos
y
−
sin
x
sin
y
{\displaystyle \cos \left(x+y\right)=\cos x\cos y-\sin x\sin y}
cos
(
x
−
y
)
=
cos
x
cos
y
+
sin
x
sin
y
{\displaystyle \cos \left(x-y\right)=\cos x\cos y+\sin x\sin y}
sin
x
+
sin
y
=
2
sin
(
x
+
y
2
)
cos
(
x
−
y
2
)
{\displaystyle \sin x+\sin y=2\sin \left({\frac {x+y}{2}}\right)\cos \left({\frac {x-y}{2}}\right)}
sin
x
−
sin
y
=
2
cos
(
x
+
y
2
)
sin
(
x
−
y
2
)
{\displaystyle \sin x-\sin y=2\cos \left({\frac {x+y}{2}}\right)\sin \left({\frac {x-y}{2}}\right)}
cos
x
+
cos
y
=
2
cos
(
x
+
y
2
)
cos
(
x
−
y
2
)
{\displaystyle \cos x+\cos y=2\cos \left({\frac {x+y}{2}}\right)\cos \left({\frac {x-y}{2}}\right)}
cos
x
−
cos
y
=
−
2
sin
(
x
+
y
2
)
sin
(
x
−
y
2
)
{\displaystyle \cos x-\cos y=-2\sin \left({\frac {x+y}{2}}\right)\sin \left({\frac {x-y}{2}}\right)}
tan
x
+
tan
y
=
sin
(
x
+
y
)
cos
x
cos
y
{\displaystyle \tan x+\tan y={\frac {\sin \left(x+y\right)}{\cos x\cos y}}}
tan
x
−
tan
y
=
sin
(
x
−
y
)
cos
x
cos
y
{\displaystyle \tan x-\tan y={\frac {\sin \left(x-y\right)}{\cos x\cos y}}}
cot
x
+
cot
y
=
sin
(
x
+
y
)
sin
x
sin
y
{\displaystyle \cot x+\cot y={\frac {\sin \left(x+y\right)}{\sin x\sin y}}}
cot
x
−
cot
y
=
−
sin
(
x
−
y
)
sin
x
sin
y
{\displaystyle \cot x-\cot y={\frac {-\sin \left(x-y\right)}{\sin x\sin y}}}
Các Hàm lượng giác nghịch đảo
sửa
Các hàm nghịch đảo có thể được ký hiệu là sin−1 hay cos−1 thay cho arcsin và arccos. Việc dùng ký hiệu mũ có thể gây nhầm lẫn với hàm mũ của hàm lượng giác.
Các hàm lượng giác nghịch đảo cũng có thể được định nghĩa bằng chuỗi vô hạn:
arcsin
z
=
z
+
(
1
2
)
z
3
3
+
(
1
⋅
3
2
⋅
4
)
z
5
5
+
(
1
⋅
3
⋅
5
2
⋅
4
⋅
6
)
z
7
7
+
⋯
=
∑
n
=
0
∞
(
(
2
n
)
!
2
2
n
(
n
!
)
2
)
z
2
n
+
1
(
2
n
+
1
)
|
z
|
<
1
{\displaystyle {\begin{matrix}\arcsin z&=&z+\left({\frac {1}{2}}\right){\frac {z^{3}}{3}}+\left({\frac {1\cdot 3}{2\cdot 4}}\right){\frac {z^{5}}{5}}+\left({\frac {1\cdot 3\cdot 5}{2\cdot 4\cdot 6}}\right){\frac {z^{7}}{7}}+\cdots \\&=&\sum _{n=0}^{\infty }\left({\frac {(2n)!}{2^{2n}(n!)^{2}}}\right){\frac {z^{2n+1}}{(2n+1)}}\end{matrix}}\,\quad \left|z\right|<1}
arccos
z
=
π
2
−
arcsin
z
=
π
2
−
(
z
+
(
1
2
)
z
3
3
+
(
1
⋅
3
2
⋅
4
)
z
5
5
+
(
1
⋅
3
⋅
5
2
⋅
4
⋅
6
)
z
7
7
+
⋯
)
=
π
2
−
∑
n
=
0
∞
(
(
2
n
)
!
2
2
n
(
n
!
)
2
)
z
2
n
+
1
(
2
n
+
1
)
|
z
|
<
1
{\displaystyle {\begin{matrix}\arccos z&=&{\frac {\pi }{2}}-\arcsin z\\&=&{\frac {\pi }{2}}-(z+\left({\frac {1}{2}}\right){\frac {z^{3}}{3}}+\left({\frac {1\cdot 3}{2\cdot 4}}\right){\frac {z^{5}}{5}}+\left({\frac {1\cdot 3\cdot 5}{2\cdot 4\cdot 6}}\right){\frac {z^{7}}{7}}+\cdots )\\&=&{\frac {\pi }{2}}-\sum _{n=0}^{\infty }\left({\frac {(2n)!}{2^{2n}(n!)^{2}}}\right){\frac {z^{2n+1}}{(2n+1)}}\end{matrix}}\,\quad \left|z\right|<1}
arctan
z
=
z
−
z
3
3
+
z
5
5
−
z
7
7
+
⋯
=
∑
n
=
0
∞
(
−
1
)
n
z
2
n
+
1
2
n
+
1
|
z
|
<
1
{\displaystyle {\begin{matrix}\arctan z&=&z-{\frac {z^{3}}{3}}+{\frac {z^{5}}{5}}-{\frac {z^{7}}{7}}+\cdots \\&=&\sum _{n=0}^{\infty }{\frac {(-1)^{n}z^{2n+1}}{2n+1}}\end{matrix}}\,\quad \left|z\right|<1}
arccsc
z
=
arcsin
(
z
−
1
)
=
z
−
1
+
(
1
2
)
z
−
3
3
+
(
1
⋅
3
2
⋅
4
)
z
−
5
5
+
(
1
⋅
3
⋅
5
2
⋅
4
⋅
6
)
z
−
7
7
+
⋯
=
∑
n
=
0
∞
(
(
2
n
)
!
2
2
n
(
n
!
)
2
)
z
−
(
2
n
+
1
)
2
n
+
1
|
z
|
>
1
{\displaystyle {\begin{matrix}\operatorname {arccsc} z&=&\arcsin \left(z^{-1}\right)\\&=&z^{-1}+\left({\frac {1}{2}}\right){\frac {z^{-3}}{3}}+\left({\frac {1\cdot 3}{2\cdot 4}}\right){\frac {z^{-5}}{5}}+\left({\frac {1\cdot 3\cdot 5}{2\cdot 4\cdot 6}}\right){\frac {z^{-7}}{7}}+\cdots \\&=&\sum _{n=0}^{\infty }\left({\frac {(2n)!}{2^{2n}(n!)^{2}}}\right){\frac {z^{-(2n+1)}}{2n+1}}\end{matrix}}\,\quad \left|z\right|>1}
arcsec
z
=
arccos
(
z
−
1
)
=
π
2
−
(
z
−
1
+
(
1
2
)
z
−
3
3
+
(
1
⋅
3
2
⋅
4
)
z
−
5
5
+
(
1
⋅
3
⋅
5
2
⋅
4
⋅
6
)
z
−
7
7
+
⋯
)
=
π
2
−
∑
n
=
0
∞
(
(
2
n
)
!
2
2
n
(
n
!
)
2
)
z
−
(
2
n
+
1
)
(
2
n
+
1
)
|
z
|
>
1
{\displaystyle {\begin{matrix}\operatorname {arcsec} z&=&\arccos \left(z^{-1}\right)\\&=&{\frac {\pi }{2}}-(z^{-1}+\left({\frac {1}{2}}\right){\frac {z^{-3}}{3}}+\left({\frac {1\cdot 3}{2\cdot 4}}\right){\frac {z^{-5}}{5}}+\left({\frac {1\cdot 3\cdot 5}{2\cdot 4\cdot 6}}\right){\frac {z^{-7}}{7}}+\cdots )\\&=&{\frac {\pi }{2}}-\sum _{n=0}^{\infty }\left({\frac {(2n)!}{2^{2n}(n!)^{2}}}\right){\frac {z^{-(2n+1)}}{(2n+1)}}\end{matrix}}\,\quad \left|z\right|>1}
arccot
z
=
π
2
−
arctan
z
=
π
2
−
(
z
−
z
3
3
+
z
5
5
−
z
7
7
+
⋯
)
=
π
2
−
∑
n
=
0
∞
(
−
1
)
n
z
2
n
+
1
2
n
+
1
|
z
|
<
1
{\displaystyle {\begin{matrix}\operatorname {arccot} z&=&{\frac {\pi }{2}}-\arctan z\\&=&{\frac {\pi }{2}}-(z-{\frac {z^{3}}{3}}+{\frac {z^{5}}{5}}-{\frac {z^{7}}{7}}+\cdots )\\&=&{\frac {\pi }{2}}-\sum _{n=0}^{\infty }{\frac {(-1)^{n}z^{2n+1}}{2n+1}}\end{matrix}}\,\quad \left|z\right|<1}
Chúng cũng có thể được định nghĩa thông qua các biểu thức sau, dựa vào tính chất chúng là đạo hàm của các hàm khác.
arcsin
(
x
)
=
∫
0
x
1
1
−
z
2
d
z
,
|
x
|
<
1
{\displaystyle \arcsin \left(x\right)=\int _{0}^{x}{\frac {1}{\sqrt {1-z^{2}}}}\,\mathrm {d} z,\quad |x|<1}
arccos
(
x
)
=
∫
x
1
1
1
−
z
2
d
z
,
|
x
|
<
1
{\displaystyle \arccos \left(x\right)=\int _{x}^{1}{\frac {1}{\sqrt {1-z^{2}}}}\,\mathrm {d} z,\quad |x|<1}
arctan
(
x
)
=
∫
0
x
1
1
+
z
2
d
z
,
∀
x
∈
R
{\displaystyle \arctan \left(x\right)=\int _{0}^{x}{\frac {1}{1+z^{2}}}\,\mathrm {d} z,\quad \forall x\in \mathbb {R} }
arccot
(
x
)
=
∫
x
∞
1
z
2
+
1
d
z
,
z
>
0
{\displaystyle \operatorname {arccot} \left(x\right)=\int _{x}^{\infty }{\frac {1}{z^{2}+1}}\,\mathrm {d} z,\quad z>0}
arcsec
(
x
)
=
∫
x
1
1
|
z
|
z
2
−
1
d
z
,
x
>
1
{\displaystyle \operatorname {arcsec} \left(x\right)=\int _{x}^{1}{\frac {1}{|z|{\sqrt {z^{2}-1}}}}\,\mathrm {d} z,\quad x>1}
arccsc
(
x
)
=
∫
x
∞
−
1
|
z
|
z
2
−
1
d
z
,
x
>
1
{\displaystyle \operatorname {arccsc} \left(x\right)=\int _{x}^{\infty }{\frac {-1}{|z|{\sqrt {z^{2}-1}}}}\,\mathrm {d} z,\quad x>1}
Công thức trên cho phép mở rộng hàm lượng giác nghịch đảo ra cho các biến số phức|phức:
arcsin
(
z
)
=
−
i
log
(
i
(
z
+
1
−
z
2
)
)
{\displaystyle \arcsin(z)=-i\log \left(i\left(z+{\sqrt {1-z^{2}}}\right)\right)}
arccos
(
z
)
=
−
i
log
(
z
+
z
2
−
1
)
{\displaystyle \arccos(z)=-i\log \left(z+{\sqrt {z^{2}-1}}\right)}
arctan
(
z
)
=
i
2
log
(
1
−
i
z
1
+
i
z
)
{\displaystyle \arctan(z)={\frac {i}{2}}\log \left({\frac {1-iz}{1+iz}}\right)}
Thể loại:Lượng giác