Tủ sách/Sách công thức/Sách công thức Toán

Số học

sửa

Đại số

sửa

Phép toán Số nguyên

sửa
Số nguyên    


Toán Số nguyên Công thức
Cộng trừ nhân chia số nguyên với số không  


 
 
 

Cộng trừ nhân chia số nguyên dương với số nguyên âm  


 
 
 

Cộng trừ nhân chia số nguyên dương với số nguyên dương  


 
 
 

Lũy thừa số nguyên  


 
  .    . Với  

Căn số nguyên  


 
 

Phép toán Lũy thừa

sửa
 
Toán lủy thừa Công thức
Lủy thừa không  
Lủy thừa 1  
Lủy thừa của số không  
Lủy thừa của số 1  
Lủy thừa trừ  
Lủy thừa phân số  
Lủy thừa của số nguyên âm


  Với  .
  . Với  

Lủy thừa của số nguyên dương  
Lủy thừa của lủy thừa  
Lủy thừa của tích hai số  
Lủy thừa của thương hai số  
Lủy thừa của căn  
Cộng trừ nhân chia 2 lủy thừa


 
 
 
 


Lủy thừa của tổng hai số

 
 


 
 
 
 

Lủy thừa của hiệu hai số


 
 
 
 
 

Hiệu 2 lũy thừa  
Tổng 2 lũy thừa  

Phép toán Toán căn

sửa
  khi có  
Toán căn số Công thức
Căn và lủy thừa
 
Căn của số nguyên


 
 
 

Căn lủy thừa


 

Căn thương số


 
 

Căn tích số


  =    

Vô căn


 

Ra căn


 

Phép toán Toán log

sửa
  khi có  
Toán Log Công thức
Viết tắc
 
 
Log 1
 
Log lũy thừa
 
Lũy thừa log
 
Log của tích số
 
Log của thương số
 
Log của lủy thừa
 
Đổi nền log
 

Phép toán Toán số phức

sửa
 

Số phức được biểu diển như ở dưới đây

Số phức Thuận   Nghịch  
Biểu diển dưới dạng xy    
Biểu diển dưới dạng Zθ    
Biểu diển dưới dạng hàm số lượng giác    
Biểu diển dưới lũy thừa của e    

Toán số phức được thực thi như sau

Toán Số phức Toán cộng Toán trừ Toán nhân Toán chia
          
          
          
          

Định lý Demoive

 

Giải tích

sửa

Hình học

sửa

Tam giác vuông Pythagore

sửa

Vector các cạnh

  . Vector cạnh ngang
  . Vector cạnh dọc
  . Vector cạnh nghiêng

Tương quan góc và cạnh

 
 
 
 
 
 

Đường dài các cạnh

 
 
 

Góc độ nghiêng

 

Hàm số đương thẳng nghiêng

 
 
 

Die^.n tích dưới hình

 
 

Với

 
 
 
 
 

Lượng giác

sửa

Khi hai đường thẳng cắt nhau tại một điểm sẽ tạo ra một góc giữa hai đường thẳng . Góc có ký hiệu   . Thí dụ 2 đường thẳng AB và AC cắt nhau tại một điểm a tạo ra góc A :  

 

Góc đo bằng đơn vị Độ o hay Radian Rad

 
 

Thí dụ : Góc A bằng 30o

 

Bảng liệt kê các loại góc

Thể loại góc Hình Định nghỉa
Góc nhọn   Góc nhọn là góc nhỏ hơn 90°
Góc vuông   Góc vuông là góc bằng 90° (1/4 vòng tròn);
Góc tù   Góc tù là góc lớn hơn 90° nhưng nhỏ hơn 180°
Góc bẹt   Góc bẹt là góc 180° (1/2 vòng tròn).
Góc phản   Góc phản là góc lớn hơn 180° nhưng nhỏ hơn 360°
Góc đầy   Góc đầy là góc bằng 360° (toàn bộ vòng tròn).

Hàm số lượng giác

sửa

6 Công thức hàm số lượng giác cơ bản định nghỉa tương quan giửa các cạnh và góc trong tam giác vuông

Hàm số lượng giác cơ bản            

Tam giác vuông

 

 

 

 

 

 

Đồ thị

 

 

 

 

 

 

Tính chất Tuần hoàn, đối xứng và tịnh tiến

sửa

Các đẳng thức sau có thể dễ thấy trên vòng tròn đơn vị:

Tuần hoàn Đối xứng Tịnh tiến
     
     
     
 

Hàm số góc bội

sửa
  • Bội hai

Các công thức sau có thể suy ra từ các công thức trên. Cũng có thể dùng công thức de Moivre với n = 2.

 
 
 

Công thức gíc kép có thể dùng để tìm bộ ba Pytago. Nếu (a, b, c) là bộ ba Pytago thì (a2 − b2, 2ab, c2) cũng vậy.

  • Bội ba

Ví dụ của trường hợp n = 3:

 
 


  • Tổng quát

Nếu Tn là đa thức Chebyshev bậc n thì

 

công thức de Moivre:

 

Hàm hạt nhân Dirichlet Dn(x) sẽ xuất hiện trong các công thức sau:

 
 

Hay theo công thức hồi quy:

 
 =

Hàm số góc chia đôi

sửa
 
 
 


Từ trên , Nhân với mẫu số và tử số 1 + cos x, rồi dùng định lý Pytago để đơn giản hóa:

 
 

Tương tự, lại nhân với mẫu số và tử số của phương trình (1) bởi 1 − cos x, rồi đơn giản hóa:

 
 

Suy ra:

 

Nếu

 

thì:

        and       and    
Công thức tổng của 2 góc
sửa
 
 
 
 
 
 
Công thức hiệu của 2 góc
sửa
 
 
 
 
 
 
Công thức tích 2 góc
sửa
 
 
 
Công thức lũy thừa của góc
sửa
 
 
 
 
 

Hàm số lượng giác nghịch

sửa

Định nghỉa

sửa

6 Công thức hàm số lượng giác cơ bản định nghỉa tương quan giửa các cạnh và góc trong tam giác vuông

Hàm số lượng giác cơ bản            

Tam giác vuông

 

 

 

 

 

 

Đồ thị

 

 

 

 

 

 

Tính chất

sửa
Chuổi Số
sửa

Các hàm lượng giác nghịch đảo cũng có thể được định nghĩa bằng chuỗi vô hạn:

 
 
 
 
 
 
Tích Phân
sửa

Chúng cũng có thể được định nghĩa thông qua các biểu thức sau, dựa vào tính chất chúng là đạo hàm của các hàm khác.

 
 
 
 
 
 
Số Phức
sửa

Công thức trên cho phép mở rộng hàm lượng giác nghịch đảo ra cho các biến số phức|phức: