Hàm số là một biểu thức đại số được dùng trong việc biểu diển tương quan giửa 2 đại lương với nhau . Thí dụ như

Tính chất

sửa

Mọi hàm số đều có một hay nhiều hơn một biến số

Mọi hàm số của một biến số    
Hàm số 2 biến số    
  .  
Hàm số 3 biến số    


Mọi hàm số đều có một giá trị

Hàm số bằng không  
Hàm số bằng hằng số không đổi  
Hàm số khác không  

Loại hàm số

sửa
Dạng hàm số Công thức Thí dụ
Hàm số tuần hoàn (Periodic function)    
Hàm số chẳn (Even function)    
Hàm số lẽ (Odd function)    
Hàm số nghịch đảo (Inverse function)    
Hàm số trong hàm số (Composite function)  
Hàm số nhiều biến số (Parametric function)  
Hàm số tương quan/]] (Recursive function)
Hàm số chia/]] (Rational function)  

Công thức toán của hàm số

sửa
Dạng hàm số Công thức Thí dụ

Hàm số đường thẳng

Hàm số đường thẳng qua 2 điểm bất kỳ
 
Hàm số đường thẳng cắt trục tung ở điển b có độ dóc a
 

Hàm số vòng tròn

Hàm số vòng tròn Z đơn vị
 

Hàm số vòng tròn 1 đơn vị

 
 
 
 

Hàm số lũy thừa Power function

 

Hàm số Lô ga rít

 

Hàm số lượng giác

 
 
 
 
 

Biểu diển Hàm số bằng tổng dải số lũy thừa

sửa

Maclaurin cho rằng mọi hàm số đều có thể biểu diển bằng tổng của dải số lũy thừa như sau

 
Chứng minh

Khi x=0

 

Khi lấy đạo hàm bậc nhứt của f(x) với giá trị x=0

 
 

Khi lấy đạo hàm bậc hai của f(x) với giá trị x=0

 
 
 

Khi lấy đạo hàm bậc ba của f(x) với giá trị x=0

 
 
 

Thế   vào hàm số ở trên   ta được

 
Thí dụ
  •  
   
   
   
   
 


  •  
   
   
   
   
   
 

Đồ thị hàm số

sửa

Đồ Thị là một cách hiển thị Tọa độ của một điểm trên một mặt phẳng . Có hai loại đồ thị Đồ Thị điểm XY và Đồ Thị điểm Rθ

Đồ Thị điểm XY

sửa
Đồ thị Hình Ý nghỉa
Đồ Thị điểm XY   Đồ Thị XY là một Đồ Thị tạo bởi hai đường thẳng vuông góc với nhau . Một ngang, gọi là trục hoành hay trục x . Một dọc, gọi là trục tung hay trục y cắt nhau tại một điểm, gọi là điểm gốc có tọa độ (0,0)


Một điểm, A , trên Đồ Thị XY sẽ có một tọa độ A(X,Y) với chiều dài X và độ cao Y . Thí dụ, Tọa độ của một điểm A(4,8) có x = 4 và y = 8

 
 

Đồ Thị điểm Rθ

sửa
Đồ thị Hình Ý nghỉa

Đồ Thị điểm Rθ

 

Đồ Thị Vòng Tròn là một cách hiển thị Tọa độ của một điểm trên vòng tròn có Bán kín R ở Góc độ θ


Khi một đường thẳng có độ dài R cắt đường chân trời (đường thẳng ngang) tại một điểm và tạo thành một góc θ. Trên mặt phẳng Rθ, đường bán kín R cắt đường chân trời tại một điểm gốc (R,0) . Trên mặt phẳng Rθ, Một điểm chuyển động theo vòng tròn sẻ có một tọa độ A(R,θ) và được biểu hiện như sau A = R/_θ

 
 

Đồ thị hàm số

sửa

Tương quan giửa 2 đại lượng x, y biểu thị bằng hàm sô

 

Lập bảng tương quan giửa hai giá trị x và y

x -2 -1 0 1 2
y = x -2 -1 0 1 2

Đặt điểm (x,y) trên đồ thi x-y ta có Đồ thị hàm số đường thẳng đi qua điểm gốc (0,0) có độ nghiêng bằng 1

 

Đồ thị của các hàm số cơ bản

Dạng hàm số Công thức Đồ thị
Hàm số đường thẳng Hàm số đường thẳng qua 2 điểm bất kỳ
 
Hàm số đường thẳng cắt trục tung ở điển b có độ dóc a
  . với  

Hàm số vòng tròn

Hàm số vòng tròn Z đơn vị
 

 

Hàm số vòng tròn 1 đơn vị

 
 
 
 

 

Hàm số lũy thừa Power function

 

 

Hàm số Lô ga rít

 

 

Hàm số lượng giác cos

 

 

Hàm số lượng giác sin

 

 

Hàm số lượng giác sec

 

 

Hàm số lượng giác csc

 

 

Hàm số lượng giác tan

 

 

Hàm số lượng giác cot

 

 




Radial lines (those running through the pole) are represented by the equation   where   is the angle of elevation of the line; that is,  , where   is the slope of the line in the Cartesian coordinate system. The non-radial line that crosses the radial line   perpendicularly at the point   has the equation  

Otherwise stated   is the point in which the tangent intersects the imaginary circle of radius  

Circle

sửa
 
A circle with equation r(φ) = 1

The general equation for a circle with a center at   and radius a is  

This can be simplified in various ways, to conform to more specific cases, such as the equation   for a circle with a center at the pole and radius a.[1]

When r0 = a or the origin lies on the circle, the equation becomes  

In the general case, the equation can be solved for r, giving   The solution with a minus sign in front of the square root gives the same curve.

Polar rose

sửa
 
A polar rose with equation r(φ) = 2 sin 4φ

A polar rose is a mathematical curve that looks like a petaled flower, and that can be expressed as a simple polar equation,  

for any constant γ0 (including 0). If k is an integer, these equations will produce a k-petaled rose if k is odd, or a 2k-petaled rose if k is even. If k is rational, but not an integer, a rose-like shape may form but with overlapping petals. Note that these equations never define a rose with 2, 6, 10, 14, etc. petals. The variable a directly represents the length or amplitude of the petals of the rose, while k relates to their spatial frequency. The constant γ0 can be regarded as a phase angle.

Archimedean spiral

sửa
 
One arm of an Archimedean spiral with equation r(φ) = φ / 2π for 0 < φ < 6πpi

The Archimedean spiral is a spiral discovered by Archimedes which can also be expressed as a simple polar equation. It is represented by the equation   Changing the parameter a will turn the spiral, while b controls the distance between the arms, which for a given spiral is always constant. The Archimedean spiral has two arms, one for φ > 0 and one for φ < 0. The two arms are smoothly connected at the pole. If a = 0, taking the mirror image of one arm across the 90°/270° line will yield the other arm. This curve is notable as one of the first curves, after the conic sections, to be described in a mathematical treatise, and as a prime example of a curve best defined by a polar equation.

 
Ellipse, showing semi-latus rectum

Conic sections

sửa

A conic section with one focus on the pole and the other somewhere on the 0° ray (so that the conic's major axis lies along the polar axis) is given by:   where e is the eccentricity and   is the semi-latus rectum (the perpendicular distance at a focus from the major axis to the curve). If e > 1, this equation defines a hyperbola; if e = 1, it defines a parabola; and if e < 1, it defines an ellipse. The special case e = 0 of the latter results in a circle of the radius  .

Intersection of two polar curves

sửa

The graphs of two polar functions   and   have possible intersections of three types:

  1. In the origin, if the equations   and   have at least one solution each.
  2. All the points   where   are solutions to the equation   where   is an integer.
  3. All the points   where   are solutions to the equation   where   is an integer.


Tóan hàm số

sửa

Thay đổi biến số

sửa

Thay đổi biến số x

 

Thay đổi biến số y

 

Biến đổi hàm số

sửa

Biến đổi hàm số tính bằng tỉ lệ thay đổi biến số y trên thay đổi biến số x

 

Đạo hàm

sửa
Đạo hàm  v  

Tích phân

sửa
Loại tích phân Hình Công thức
Tích phân xác định    
Tích phân bất định    
  1. Claeys, Johan. "Polar coordinates". http://www.ping.be/~ping1339/polar.htm.