Sách lượng giác/Công thức hàm số lượng giác cơ bản


Công thức góc Tuần hoàn, đối xứng và tịnh tiến

sửa

Các đẳng thức sau có thể dễ thấy trên vòng tròn đơn vị:

Tuần hoàn Đối xứng Tịnh tiến
     
     
     
 

Đẳng thức sau cũng đôi khi hữu ích:

 

với

 

Công thức góc bội

sửa

Bội hai

sửa

Các công thức sau có thể suy ra từ các công thức trên. Cũng có thể dùng công thức de Moivre với n = 2.

 
 
 

Công thức gíc kép có thể dùng để tìm bộ ba Pytago. Nếu (a, b, c) là bộ ba Pytago thì (a2 − b2, 2ab, c2) cũng vậy.

Bội ba

sửa

Ví dụ của trường hợp n = 3:

 
 


Tổng quát

sửa

Nếu Tn là đa thức Chebyshev bậc n thì

 

công thức de Moivre:

 

Hàm hạt nhân Dirichlet Dn(x) sẽ xuất hiện trong các công thức sau:

 
 

Hay theo công thức hồi quy:

 
 =

Công thức góc chia đôi

sửa
 
 
 


Từ trên , Nhân với mẫu số và tử số 1 + cos x, rồi dùng định lý Pytago để đơn giản hóa:

 
 

Tương tự, lại nhân với mẫu số và tử số của phương trình (1) bởi 1 − cos x, rồi đơn giản hóa:

 
 

Suy ra:

 

Nếu

 

thì:

        and       and    

Công thức tổng của 2 góc

sửa
 
 
 
 
 
 

Công thức hiệu của 2 góc

sửa
 
 
 
 
 
 

Công thức tích 2 góc

sửa
 
 
 

Công thức lũy thừa của góc

sửa