Công thức góc Tuần hoàn, đối xứng và tịnh tiến
sửa
Các đẳng thức sau có thể dễ thấy trên vòng tròn đơn vị:
Tuần hoàn |
Đối xứng |
Tịnh tiến
|
|
|
|
|
|
|
|
|
|
|
|
|
Đẳng thức sau cũng đôi khi hữu ích:
-
với
-
Các công thức sau có thể suy ra từ các công thức trên. Cũng có thể dùng công thức de Moivre với n = 2.
-
-
-
Công thức gíc kép có thể dùng để tìm bộ ba Pytago. Nếu (a, b, c) là bộ ba Pytago thì (a2 − b2, 2ab, c2) cũng vậy.
Ví dụ của trường hợp n = 3:
-
-
Nếu Tn là đa thức Chebyshev bậc n thì
-
công thức de Moivre:
-
Hàm hạt nhân Dirichlet Dn(x) sẽ xuất hiện trong các công thức sau:
-
-
Hay theo công thức hồi quy:
-
- =
Công thức góc chia đôi
sửa
-
-
-
Từ trên , Nhân với mẫu số và tử số 1 + cos x, rồi dùng định lý Pytago để đơn giản hóa:
-
-
Tương tự, lại nhân với mẫu số và tử số của phương trình (1) bởi 1 − cos x, rồi đơn giản hóa:
-
-
Suy ra:
-
Nếu
-
thì:
|
|
and |
|
and |
|
Công thức tổng của 2 góc
sửa
-
-
-
-
-
-
Công thức hiệu của 2 góc
sửa
-
-
-
-
-
-
-
-
-
Công thức lũy thừa của góc
sửa
-
-
-
-
-