Sách công thức/Sách công thức Vật lý/Công thức Nhiệt

Nhiệt độ và nhiệt

sửa
Nhiệt độ Nhiệt Thí dụ Nhiệt độ C Nhiệt độ F Nhiệt độ K
Cao Nóng Rắn 0oC
Trung bình Ấm Lỏng 25oC
Thấp Lạnh Khí 100oC

Chuyển đổi nhiệt độ

sửa
Các công thức đổi nhiệt độ
Đổi từ Sang Công thức
Fahrenheit Celsius °C = 5/9 (F – 32)
Celsius Fahrenheit °F = 9/5 C + 32
Celsius Kelvin K = C + 273,15
Kelvin Celsius °C = K - 273,15
Kelvin Fahrenheit °F= 9/5 (K – 273,15) + 32
Fahrenheit Kelvin K = 5/9 (F - 32) + 273,15

Nhiệt độ chuẩn

sửa
Nhiệt độ Áp suất tiêu chuẩn STP -  

Nhiệt độ vật chất

Rắn -  
Lỏng -   .
Khí -  

Nhiệt độ 0 tuyệt đối

 

Nhiệt độ phòng

 

Thí nghiệm lửa và vật

sửa

Trạng thái vật chất

sửa

Thí nghiệm cho thấy khi vật và lửa tương tác với nhau, vật có thay đổi trạng thái từ rắn sang lỏng sang khí do có thay đổi nhiệt độ trên vật

Quá trình thay đổi trạng thái Định nghỉa Nhiệt độ thay đổi trạng thái Nhiệt độ
Quá trình nóng chảy Quá trình vật chuyển đổi trạng thái từ rắn sang lỏng Nhiệt đô nóng chảy   .
Quá trình bốc hơi Quá trình vật chuyển đổi trạng thái từ lỏng sang khí Nhiệt đô bốc hơi  
Quá trình đông đặc Quá trình vật chuyển đổi trạng thái từ lỏng sang rắn Nhiệt đô đông đặc  


Mọi vật tồn tại ở 4 trạng thái 1. Rắn , 2. Lỏng , 3. Khí , 4. plasma . Sự biến đổi trạng thái của vật chất được được mô tả qua Phương trình trạng thái

 

Bao gồm cá phương trình dưới đây

Định luật công thức Ý nghỉa
Định luật Boyle (1662)   Áp lực và thể tích tỉ lệ nghịch với nhau
Định luật Charles (1787)  
Định luật Avogadro (1812)  
Định luật Benoît Paul Émile Clapeyron in (1834)  
Định luật Van der Waals (1873) khí lý tưởng (1834)  where:
Định luật áp lực từng phần của Dalton (1801)  

Phóng xạ phân rả

sửa

Phóng xạ vật đen

sửa
 

Planck biết rằng vật tối hấp thụ năng lượng nhiệt tốt nhứt . Planck thực hiện thí nghiệm trên vật tối và thấy rằng khi nhiệt độ tăng dần từ thấp đến cao

  • Cường độ nhiệt tăng theo tần số thời gian
  • Đỉnh sóng nhiệt ở bước sóng ngắn hơn
  • Phát ra ánh sáng màu theo trình tự từ Trắng , Đỏ , Vàng , Tím , và Đen
Nhiệt độ Màu Cường độ nhiệt Bước sóng
Lạnh Trắng Thấp Ngắn
Ấm Vàng Trung Trung
Nóng Đen Cao Dài

Phóng xạ nguyên tố

sửa

Marie curie khám phá vật chất không bền do có tương tác với quang tuyến nhiệt như Uramium phân rả để trở thành vật chất bền tạo ra Phóng xạ alpha . Henry Beckelrel khám phá cho thấy vật chất đồng vị không bền do có tương tác với quang tuyến nhiệt như Carbon phân rả để trở thành vật chất bền tạo ra Phóng xạ beta

Phóng xạ alpha Phóng xạ beta Phóng xạ gamma

Phóng xạ nguyên tử

sửa

Khi Điện tử âm đi ra khỏi nguyên tử điện

 
 
 
Để có   ,  


Khi Điện tử âm đi vô trong nguyên tử điện

 
 
 
 
 
  • Phóng xạ sóng diện từ

Thí nghiệm điện và vật

sửa

Nhiệt điện

sửa

Mọi vật dẩn điện đều có giải thoát năng lượng nhiệt vào môi trường xung quanh dưới dạng năng lượng điện thất thoát

Cuộn từ    
Tụ điện    
Điện trở     đúng cho Dẩn điện,


  đúng cho bán dẩn điện
 

Nhiệt điện từ

sửa
Nhiệt điện từ Nhiệt Nhiệt quang Nhiệt điện
Lối mắc   ≈≈≈   ≈≈≈==   ≈≈≈e
Cộng dây thẳng dẫn điện Cuộn tròn của N vòng tròn dẫn điện Cuộn tròn của N vòng tròn dẫn điện
với từ vật nằm trong các vòng quấn
Tần số thời gian      
Năng lực nhiệt
 

 

 
Hằng số C
 

 

 
Khối lượng/Lượng tử      
Động lượng
 

 

 
Bước sóng      

Lượng tử hóa

 
 
 

Nhiệt và vật

sửa

Nhiệt cảm

sửa

Tỏa nhiệt sáng thấy được vào môi trường xung quanh

T Δ T W Hướng nhiệt truyền
     
      Nhiệt di chuyển từ T0 đến T1
      Nhiệt di chuyển từ T1 đến T0
 

Nhiệt dẩn

sửa

Tỏa nhiệt sáng chói thấy được vào môi trường xung quanh

 

Nhiệt phóng xạ

sửa

Tỏa nhiệt tối không thấy được vào môi trường xung quanh

 

Định luật nhiệt động học

sửa

Các định luật của nhiệt động lực học còn được gọi là các nguyên lý nhiệt động lực học.

Định luật 0

sửa

Nguyên lý cân bằng nhiệt động, nói về cân bằng nhiệt động. Hai hệ nhiệt động đang nằm trong cân bằng nhiệt động với nhau khi chúng được cho tiếp xúc với nhau nhưng không có trao đổi năng lượng.

Nếu hai hệ có cân bằng nhiệt động với cùng một hệ thứ ba thì chúng cũng cân bằng nhiệt động với nhau

Định luật 1

sửa

chính là định luật bảo toàn năng lượng áp dụng vào hiện tượng nhiệt, khẳng định rằng năng lượng luôn được bảo toàn. Nói cách khác, tổng năng lượng của một hệ kín là không đổi. Các sự kiện xảy ra trong hệ chẳng qua là sự chuyển năng lượng từ dạng này sang dạng khác. Như vậy năng lượng không tự sinh ra và không tự mất đi, nó luôn biến đổi trong tự nhiên. Trong toàn vũ trụ, tổng năng lượng không đổi, nó chỉ có thể chuyển từ hệ này sang hệ khác.

Độ biến thiên nội năng của hệ bằng tổng công và nhiệt lượng mà hệ nhận được 
ΔU = A + Q . Trong trường hợp này, chúng ta có thể quy định về dấu của A và Q để biết hệ đang nhận hay thực hiện công, nhận hay truyền nhiệt lượng. Ví dụ:
Q > 0: Hệ nhận nhiệt lượng
Q < 0: Hệ truyền nhiệt lượng
A > 0: Hệ nhận công
A < 0: Hệ thực hiện công

Định luật 2

sửa

Nguyên lý về entropy, liên quan đến tính không thể đảo ngược của một quá trình nhiệt động lực học và đề ra khái niệm entropy. Từ đó dẫn đến định luật là không thể chuyển từ trạng thái mất trật tự sang trạng thái trật tự nếu không có sự can thiệp từ bên ngoài.

Một hệ lớn và không trao đổi năng lượng với môi trường sẽ có entropy luôn tăng hoặc không đổi theo thời gian . Entropy của một hệ kín chỉ có hai khả năng, hoặc là tăng lên, hoặc giữ nguyên 

Vì entropy là mức độ hỗn loạn của hệ, định luật này nói rằng vũ trụ sẽ ngày càng "hỗn loạn" hơn. Cơ học thống kê đã chứng minh rằng định luật này là một định lý, đúng cho hệ lớn và trong thời gian dài. Đối với hệ nhỏ và thời gian ngắn, có thể có thay đổi ngẫu nhiên không tuân thủ định luật này. Nói cách khác, không như định luật 1, các định luật vật lý chi phối thế giới vi mô chỉ tuân theo định luật 2 một cách gián tiếp và có tính thống kê. Ngược lại, định luật 2 khá độc lập so với các tính chất của các định luật đó, bởi lẽ nó chỉ thể hiện khi người ta trình bày các định luật đó một cách giản lược hóa và ở quy mô nhỏ.

Định luật 3

sửa

Nguyên lý Nernst còn được gọi là nguyên lý độ không tuyệt đối, đã từng được bàn cãi nhiều nhất, gắn liền với sự tụt xuống một trạng thái lượng tử cơ bản khi nhiệt độ của một hệ tiến đến giới hạn của độ không tuyệt đối.

Trạng thái của mọi hệ không thay đổi tại nhiệt độ không tuyệt đối (0K)

Xem thêm

sửa