Trang chính
Ngẫu nhiên
Đăng nhập
Tùy chọn
Quyên góp
Giới thiệu Wikibooks
Lời phủ nhận
Tìm kiếm
Điện tử/Mạch điện điện tử/RLC nối tiếp
Ngôn ngữ
Theo dõi
Sửa đổi
Mạch RLC nối tiếp
sửa
Mạch RLC nối tiếp tạo từ mắc nối tiếp 3 linh kiện điện tử R, L, C
Ỏ trạng thái cân bằng
V
L
+
V
C
+
V
R
=
0
{\displaystyle V_{L}+V_{C}+V_{R}=0}
L
d
2
i
d
t
2
+
1
C
∫
i
d
t
+
i
R
=
0
{\displaystyle L{\frac {d^{2}i}{dt^{2}}}+{\frac {1}{C}}\int idt+iR=0}
d
2
i
d
t
2
+
R
L
d
i
d
t
+
1
L
C
i
=
0
{\displaystyle {\frac {d^{2}i}{dt^{2}}}+{\frac {R}{L}}{\frac {di}{dt}}+{\frac {1}{LC}}i=0}
s
2
i
+
R
L
s
i
+
1
L
C
i
=
0
{\displaystyle s^{2}i+{\frac {R}{L}}si+{\frac {1}{LC}}i=0}
s
2
+
2
α
+
β
=
0
{\displaystyle s^{2}+2\alpha +\beta =0}
s
{\displaystyle s}
α
,
β
{\displaystyle \alpha ,\beta }
f
(
t
)
=
A
e
s
t
{\displaystyle f(t)=Ae^{st}}
α
{\displaystyle \alpha }
α
=
β
{\displaystyle \alpha =\beta }
i
=
A
e
−
α
t
=
A
(
α
)
{\displaystyle i=Ae^{-\alpha t}=A(\alpha )}
α
±
λ
{\displaystyle \alpha \pm \lambda }
α
>
β
{\displaystyle \alpha >\beta }
i
=
A
e
(
−
α
±
λ
)
t
=
A
(
α
)
e
λ
t
+
A
(
α
)
e
−
λ
t
{\displaystyle i=Ae^{(-\alpha \pm \lambda )t}=A(\alpha )e^{\lambda t}+A(\alpha )e^{-\lambda t}}
α
±
j
ω
{\displaystyle \alpha \pm j\omega }
α
>
β
{\displaystyle \alpha >\beta }
i
=
A
e
(
−
α
±
λ
)
t
=
A
(
α
)
s
i
n
ω
t
{\displaystyle i=Ae^{(-\alpha \pm \lambda )t}=A(\alpha )sin\omega t}
A
(
α
)
=
A
e
−
α
t
{\displaystyle A(\alpha )=Ae^{-\alpha t}}
ω
=
β
−
α
{\displaystyle \omega ={\sqrt {\beta -\alpha }}}
λ
=
α
−
β
{\displaystyle \lambda ={\sqrt {\alpha -\beta }}}
β
=
1
L
C
{\displaystyle \beta ={\frac {1}{LC}}}
α
=
R
2
L
{\displaystyle \alpha ={\frac {R}{2L}}}
Ở trạng thái đồng bộ
Z
t
=
Z
L
+
Z
C
+
Z
R
=
R
{\displaystyle Z_{t}=Z_{L}+Z_{C}+Z_{R}=R}
Z
C
+
Z
L
=
0
{\displaystyle Z_{C}+Z_{L}=0}
ω
L
=
−
1
ω
C
{\displaystyle \omega L=-{\frac {1}{\omega C}}}
ω
o
=
−
1
L
C
=
±
j
1
L
C
=
±
j
1
T
{\displaystyle \omega _{o}={\sqrt {-{\frac {1}{LC}}}}=\pm j{\sqrt {\frac {1}{LC}}}=\pm j{\sqrt {\frac {1}{T}}}}
T
=
L
C
{\displaystyle T=LC}
i
(
ω
=
0
)
=
0
{\displaystyle i(\omega =0)=0}
i
(
ω
=
ω
o
)
=
v
R
{\displaystyle i(\omega =\omega _{o})={\frac {v}{R}}}
i
(
ω
=
00
)
=
0
{\displaystyle i(\omega =00)=0}